СТРУКТУРНІ ОСОБЛИВОСТІ КІСТКОВОЇ ТКАНИНИ НИЖНЬОЇ ЩЕЛЕПИ

Автор(и)

  • Василь Пикалюк
  • Семен Мостовий
  • Володимир Лавренюк

DOI:

https://doi.org/10.24061/1727-0847.22.1.2023.11

Ключові слова:

нижня щелепа; ремоделювання; органічний матрикс

Анотація

В огляді розглянуто особливості морфогенезу нижньої щелепи, її відмінності порівняно
з трубчастими кістками. Описані її ембріогістогенез, процеси ремоделювання, остеогенний потенціал мезенхімних стовбурових клітин. Показані особливості цитологічної будови клітинного остеобластного, остеоцитарного та остеокластного кластерів, з’ясовано їх функціональну роль. Акцентована увага на будові колагено- оссеїнового білка органічного кісткового матриксу, який визначає біомеханічні характеристики кістки. Подані його посттрансляційні модифікації як результат міжмолекулярного зшивання та гідроксилювання лізину, який є найважливішим детермінантом структури колагену, визначаючи міцність і пружність нижньої щелепи. Акцентовані причини високої швидкості його ремоделювання, що й визначає ступінь пружності цієї лицевої кістки.

Посилання

Kim MS, Jung SY, Kang JH, Kim HJ, Ko HM, Jung JY, et al. Eff ects of bisphosphonate on the endochondral bone formation of the mandibular condyle. Anat Histol Embryol. 2009;38(5):321-6. doi: 10.1111/j.1439-0264.2009.00938.x.

Chai Y, Maxson REJr. Recent advances in craniofacial morphogenesis. Developmental Dyn. 2006;235(9):2353-75. doi: 10.1002/dvdy.20833.

Karaplis AC. Embryonic Development of Bone and the Molecular Regulation of Intramembranous and Endochondral Bone Formation. Principles of Bone Biology (Second Edition). 2002;33(4):33-58. https://doi.org/10.1016/B978-012098652-1.50105-0.

Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, et al. Alveolar bone marrow as a cell source for regenerative medicine: diff erences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res. 2005;20(3):399-409. doi: 10.1359/JBMR.041117.

Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, et al. Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res. 2010;89(11):1293-8. doi: 10.1177/0022034510378427.

Damek- Poprawa M, Stefanik D, Levin LM, Akintoye SO. Human bone marrow stromal cells display variable anatomic site-dependent response and recovery from irradiation. Arch Oral Biol. 2010;55(5):358-64. doi: 10.1016/j.archoralbio.2010.03.010.

Yamaza T, Ren G, Akiyama K, Chen C, Shi Y, Shi S. Mouse mandible contains distinctive mesenchymal stem cells. J Dent Res. 2011;90(3):317-24. doi: 10.1177/0022034510387796.

Inoue M, Ono T, Kameo Y, Sasaki F, Ono T, Adachi T, et al. Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep. 2019;9(1):4404. doi: 10.1038/s41598-019-40463-3.

Lloyd B, Tee BC, Headley C, Emam H, Mallery S, Sun Z. Similarities and diff erences between porcine mandibular and limb bone marrow mesenchymal stem cells. Arch Oral Biol. 2017;77:1-11. doi: 10.1016/j. archoralbio.2017.01.012.

Huang X, Cheng B, Song W, Wang L, Zhang Y, Hou Y, et al. Superior CKIP-1 sensitivity of orofacial bonederived mesenchymal stem cells in proliferation and osteogenic diff erentiation compared to long bone-derived mesenchymal stem cells. Mol Med Rep. 2020;22(2):1169-78. doi: 10.3892/mmr.2020.11239.

Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS. Mechanical loading- related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. 2012;23(4):1225-34. doi: 10.1007/s00198-011-1656-4.

Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M, Albrektsson T, et al. The eff ect of static bone strain on implant stability and bone remodeling. Bone. 2011;49(4):783-9. doi: 10.1016/j.bone.2011.07.003.

Iezzi G, Mangano C, Barone A, Tirone F, Baggi L, Tromba G, et al. Jawbone remodeling: a conceptual study based on Synchrotron High-resolution Tomography. Sci Rep. 2020;2:10(1):3777. doi: 10.1038/s41598-020-60718-8.

Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in Cell and Developmental Biology. 2008;19(5):444-51. doi: 10.1016/j.semcdb.2008.07.016.

Matsuo K, Irie N. Osteoclast- osteoblast communication. Archives of Biochemistry and Biophysics. 2008;473(2):201-9. doi: 10.1016/j.abb.2008.03.027.

Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. Journal of Bone and Mineral Research. 2001;16(9):1575-82. doi: 10.1359/jbmr.2001.16.9.1575.

Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes- Hansen F, Plesner TL, Hauge EM, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174(1):239-47. doi: 10.2353/ajpath.2009.080627.

Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell and more. Endocrine Reviews. 2013;34(5):658-90. doi: 10.1210/er.2012-1026.

Rodionova NV. Tsytolohichni mekhanizmy perebudov u kistkakh pry hipokinezii ta mikrohravitatsii [Cytological mechanisms of bone remodeling in hypokinesia and microgravity]. Kyiv: Naukova dumka; 2006. 240 p. (in Ukrainian).

Rabel K, Kohal RJ, Steinberg T, Tomakidi P, Rolauffs B, Adolfsson E, et al. Controlling osteoblast morphology and proliferation via surface micro-t opographies of implant biomaterials. Sci Rep. 2020;10(1):12810. doi: 10.1038/s41598-020-69685-6.

Pykaliuk VS, Mostovoi SO. Suchasni uiavlennia pro biolohiiu ta funktsii kistkovoi tkanyny [Modern ideas about the biology and functions of bone tissue]. Tavr. medbiol. visnyk. 2006;9(3):186-94. (in Ukrainian).

Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286(15):2830-69. doi: 10.1111/febs.14818. 23. Henri Dzh.P., Bordoni B. Histolohiia, Osteoblasty. 8 travnia 2022 r. [Histology, Osteoblasts. May 8, 2022]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.

Mosley JR. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J Rehabil Res Dev. 2000;37(2):189-99.

Liu H, Guo J, Wang L, Chen N, Karaplis A, Goltzman D, Miao D. Distinctive anabolic roles of 1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and mandible versus long bones. J Endocrinol. 2009;203(2):203-13. doi: 10.1677/JOE-09-0247.

Yang X, Jiang J, Zhou L, Wang S, He M, Luo K, et al. Osteogenic and angiogenic characterization of mandible and femur osteoblasts. J Mol Histol. 2019;50(2):105-17. doi: 10.1007/s10735-019-09810-6.

Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein- Nulend J. Osteocyte morphology in fi bula and calvaria is there a role for mechanosensing? Bone. 2008;43(3):452-8. doi: 10.1016/j.bone.2008.01.030.

Wu V, van Oers RFM, Schulten EAJM, Helder MN, Bacabac RG, Klein- Nulend J. Osteocyte morphology and orientation in relation to strain in the jaw bone. Int J Oral Sci. 2018;10(1):2. doi: 10.1038/s41368-017-0007-5.

Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173(2):303-11. doi: 10.1016/j.jsb.2010.11.014.

Bйlanger LF, Bйlanger C, Semba T. Technical approaches leading to the concept of osteocytic osteolysis. Clin Orthop Relat Res. 1967;54:187-96.

Mostovyi SO, Pykaliuk VS, Shul'hin VF, Pieshkov MV. Patomorfolohichni zminy nyzhnikh schelep laboratornykh bilykh schuriv pid diieiu analoha fosforovmisnoi autopatohenetychnoi rechovyny [Pathomorphological changes in the lower jaws of laboratory white rats under the influence of an analogue of a phosphorus-containing autopathogenetic substance]. Kryms'kyi zhurnal eksperymental'noi i klinichnoi medytsyny. 2017;7(2):91-6. (in Ukrainian).

Pykaliuk VS, Kutia SA, Shaduro DV. Modyfikatsiia metodyky histolohichnoho doslidzhennia kistkovoi tkanyny [Modification of the technique of histological examination of bone tissue]. Morfolohiia. 2010;4(3):72-6. (in Ukrainian).

Bonewald LF. Osteocytes: a proposed multifunctional bone cell. J Musculoskelet Neuronal Interact. 2002;2(3):239-41.

Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229-38. doi: 10.1002/jbmr.320.

Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifi es a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310-5. doi: 10.1038/ng1905.

Feng JQ, Ye L, Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr Opin Nephrol Hypertens. 2009;18(4):285-91. doi: 10.1097/MNH.0b013e32832c224f.

Tfelt- Hansen J, Brown EM. The calcium- sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42(1):35-70. doi: 10.1080/10408360590886606.

Baud CA. Morphologie et structure inframicroscopique des osteocytes. Acta Anat. 1962;51(3):209-25. https://doi.org/10.1159/000142316.

Mostovoy S, Pikaluk V, Plekhanova K, Peshkov M. Mandible Aseptic Osteonecrosis Caused by admission of the Narcotic Substances Containing Aminophosphonic Impurities: Levelling with Trilon B. Published by Lesya Ukrainka Eastern European National Universit. 2020;1(389):72-9.

Avrunin AS, Tykhonov RM, Shubniakov II. Dynamichna otsinka osteotsytarnoho remodeliuvannia kistkovoi tkanyny pry vykorystanni neinvazyvnoho metodu [Dynamic assessment of osteocytic remodeling of bone tissue using a non-invasive method]. Morolohiia. 2009;2:66-73. (in Ukrainian).

e Souza Faloni AP, Schoenmaker T, Azari A, Katchburian E, Cerri PS, de Vries TJ, Everts V. Jaw and long bone marrows have a diff erent osteoclastogenic potential. Calcif Tissue Int. 2011;88(1):63-74. doi: 10.1007/s00223-010-9418-4.

Azari A, Schoenmaker T, de Souza Faloni AP, Everts V, de Vries TJ. Jaw and long bone marrow derived osteoclasts diff er in shape and their response to bone and dentin. Biochem Biophys Res Commun. 2011;409(2):205-10. doi: 10.1016/j.bbrc.2011.04.120.

Khem A, Kormak D. Kistkova tkanyna [Bone tissue]. Histolohiia. 1985;3:19-131. (in Ukrainian).

Wang Y, Azaпs T, Robin M, Vallйe A, Catania C, Legriel P, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater. 2012;11(8):724-33. doi: 10.1038/nmat3362.

Hong HH, Pischon N, Santana RB, Palamakumbura AH, Chase HB, Gantz D, et al. A role for lysyl oxidase regulation in the control of normal collagen deposition in diff erentiating osteoblast cultures. J Cell Physiol. 2004;200(1):53-62. doi: 10.1002/jcp.10476.

Sricholpech M, Perdivara I, Nagaoka H, Yokoyama M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J Biol Chem. 2011;286(11):8846-56. doi: 10.1074/jbc.M110.178509.

Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M. Lysyl hydroxylase-2b directs collagen cross- linking pathways in MC3T3-E1 cells. J Bone Miner Res. 2004;19(8):1349-55. doi: 10.1359/JBMR.040323.

Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M. Overexpression of lysyl hydroxylase-2b leads to defective collagen fi brillogenesis and matrix mineralization. J Bone Miner Res. 2005;20(1):81-7. doi: 10.1359/JBMR.041026.

Sasaki M, Matsuura T, Katafuchi M, Tokutomi K, Sato H. Higher contents of mineral and collagen but lower of hydroxylysine of collagen in mandibular bone compared with those of humeral and femoral bones in human. Journal of Hard Tissue Biology. 2010;19(3):175-80. https://doi.org/10.2485/jhtb.19.175.

Huja SS, Fernandez SA, Hill KJ, Li Y. Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(12):1243-9. doi: 10.1002/ar.a.20396.

##submission.downloads##

Опубліковано

2023-02-23

Номер

Розділ

Наукові огляди