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BIOLOGICAL ROLE OF REACTIVE OXYGEN SPECIES
IN MITOCHONDRIA

BIOJIOT'TYHA POJIb AKTUBHUX ®OPM KNCHIO B MITOXOHIPIAX

Pe3tome. CTaTTs mpHCBSIUCHA JDKEpellaM YTBOPCHHS BITPHUX PAaTUKaJliB Y MITOXOHAPIAX Ta criemudiri mi-
TOXOHJIpIAJILHUX aHTUOKCUIAHTHUX €H3uMiB. OCTaHHI HAYKOBi JOCIIiPKEHHS IMiITBEPKYIOTh, IO OKUCIIIO-
BaJIbHUI CTpEC € MPUYMHOI0 0araTth0X 3aXBOPIOBAaHb, 30KpEMa, CEPIIEBO-CyANHHUX, HEHpPOIEreHepaTHBHIUX,
3aXBOPIOBaHb HUPOK Ta MEYiHKH, 3aaJIbHUX TPOIIECiB, PAKOBUX HOBOYTBOPEHbB, PO3BUTKY I[yKPOBOTO /1ia0eTy.
MitoxoHpii, sk ocHOBHI BUpoOHUKN AT®, i BomHouac — reHeparopu aktuBHUX popm kucHio (ADK), Bimirpa-
I0Th BUPIIIAIBHY POJib y KIITUHHOMY MeTa0oii3Mi. BOHM € Ba)IIMBOIO MIIlICHHIO OKMCHOTO TOIIKOJKCHHS,
SIKE MOYKE TIPU3BECTH JI0 3aTHOEIi 1 MITOXOHAPIH, 1 KITITHHH!, OCKUIBKH ITOIIKOKEHI MITOXOHIPil MPOTyKyBaTH-
MyTh Bce Oinbiie ADOK. YTBOpeHi BibHI paAuKain MOKYTh aKTHBOBYBAaTH OKHCIIOBAaJIbHO-BITHOBHI €H3UMHU,
SKi 6epyTh y4acTh y 3aXUCHUX CHTHAJIBHUX NMUIIXaX, Ta 0€3M0CepeIHRO BIUIMBATH HA KUTTE3AATHICTD KITITHH.
[Ipote miTOXOHApiambHA CUCTEMa MICTUTh AaHTHUOKCHAAHTHI €H3UMH 1 He()epMEHTATHBHI KOMIIOHEHTH 3 aH-
THOKCHJAHTHAMH BJIACTUBOCTIMH, SIKi JOMTOMAararoTh KOHTPOIIOBATH OajaHC y OKCHIAHT-aHTHOKCHIAHTHIN
cucteMi opranizmy. OKpiM TOTO, TONIKOJKSHHS MiTOXOHJIPIH 1 MiJBUIICHUH PiBEHb BIJIBHUX PaMKAIIiB MOXKE
OyTH OHHM i3 BaXUTHBUX OiOMapKepiB IUISI MOHITOPUHTY ITPOTPECYBAHHS PI3HUX 3aXBOPIOBAHb.

Ku11040Bi cj10Ba: OKHCTIOBATBHHAN CTPEC, aKTUBHI (OPMH KHCHIO, aHTHOKCHIAHTHA CHCTEMa, MITOXOHPI].

Oxidative stress plays an important role in the
development and progress of different pathological
processes. These free radical molecules are an

(peroxyl [RO,], superoxide [(O,"], hydroxyl [OH'],
alkoxyl [RO']), and some non-radical derivatives of
oxygen (singlet oxygen ('O,), hydrogen peroxide

assembly of reactive oxygen species (ROS) and
reactive nitrogen species. Mitochondrial ROS are
crucial for an organism’s homeostasis. By regulation
of signaling pathways, they activate the adaptation and
protection behaviors of an organism under stress. The
accumulation of ROS cause damage to DNA, proteins,
and lipids, and other pathological processes [1, 2].
ROS are different products from the partial
reduction of oxygen, including oxygen free radicals
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(H,0,), and hypochlorous acid (HOCI)). Next
ROS can be converted to reactive nitrogen species
(peroxynitrite (ONOO"), nitric oxide (NO"), nitrogen
dioxide (NO,)), and other oxides of nitrogen [3-5].
Hydroxyl radicals are short-lived, highly
reactive, and contribute significantly to local organelle
damage through protein modification. The intensive
generation of ROS can be result of the action of
p450 monooxygenase, mitochondrial oxidative
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phosphorylation, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, monoamine oxidase,
lipoxygenase, xanthine oxidase, cyclooxygenase. As
we know, mitochondria are not only the source of
energy through oxidative phosphorylation on the inner
membrane, but also process of mitochondrial oxidative
phosphorylation is the main origin of free radicals.
Free radicals a decrease in mitochondrial respiratory
function, because they impair mitochondrial structure
and function by increasing mitochondrial free radical
production [6, 7].

The aim of article is a focus on the sources of
free radicals in the mitochondria and specificity of
mitochondrial antioxidant enzymes.

Mitochondrial energy generation.
Mitochondrial energy formation is first consummate in
Kreb’s cycle and submitted in ATP-form, nicotinamide
adenine dinucleotide (NADH) and reduced flavin
adenine dinucleotide (FADH,). Next, oxidative
phosphorylation is the primary energy process
for convertation of the oxidoreduction energy of
mitochondrial electron transport to the high energy
phosphate bond ATP. Oxygen (O,) is the terminal
electron acceptor for cytochrome C oxidase of
complex IV in the mitochondrial electron transport
chain (ETC) catalyzed four electrons reduction of
O, to water. Coenzyme Q (CoQ, ubiquinone) is an
electron pool and a mediator of the electron transport
between complex II and III (ubiquinone-cytochrome
c reductase) with NADH- dehydrogenase (complex
I). The major production site of O, is reportedly
complexes I and III. In general, I complex produces
O,’ on the matrix side of the inner membrane, whereas
complex IlI-derived O, is produced both towards
the inner-membrane space and the matrix [8-10]. So,
a decline in CoQ concentrations, activated reverse
electron transfer, reducing of the electron transport
rate, or inhibition of electron flow can cause high-
energy electrons leaking from the ETC at complexes
L 11, I1I, and IV to produce O, [11].

The matrix contains the components of the
tricarboxylic acid cycle and fatty acid f-oxidation
pathway, as well as mitochondrial deoxyribonucleic
acid (mtDNA). There is an opinion [6] that the
mtDNA is one of critical targets for oxidative damage,
because it can amplify the secondary generation of
ROS. 1t is also noteworthy that self-amplification of
the mitochondrial ROS generation can occur following
ROS activation of mitochondrial permeability
transition pore. Opening of the mitochondrial
permeability transition pore is triggered and ROS can
induce the simultaneous collapse of the mitochondrial
membrane potential (Ay) and a further increase in
ROS generation by the electron transport chain [12].
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In addition, mitochondrial respiration is
ordinarily accompanied by low-level ROS production,
but they can respond to elevated ROS concentrations
by increasing their own ROS production — ROS-
induced ROS release. The regenerative cycle of
mitochondrial ROS formation and release apparently
constitutes one of adaptive functions of the timely
release from mitochondria of accumulated potentially
toxic production of ROS [10].

Leakage of electrons from the electron transport
chain can result in incomplete reduction of molecular
oxygen to produce O, which can damage heme
moieties or enzymes with iron-sulfur centers such as
aconitase ([4Fe-4S]—[3Fe-4S]%) to release ferrous ion
(Fe*?). The Fe™ can subsequently react with H,O, to
generate hydroxyl radicals. Those superoxide radical
anions can also react with NO' to form the damaging
oxidant ONOO-, which is more reactive than either
precursor. In turn, hydroxyl radical and nitric dioxide
can be produced from ONOO-, and membrane lipid
peroxidation and nitration of proteins on tyrosine
residues are promoted. ONOO™ further damages
the complexes I, I, and V as well as mitochondrial
superoxide dismutase (SOD), glutathione
peroxidase (GP_, and aconitase. Some studies [13,
14] demonstrate that NO diffuses easily along its
gradient into mitochondria and is also produced by
mitochondria.

Mitochondrial membranes are mostly composed
of protein and phospholipids, whose interdependence
is critical for mitochondrial function. And fatty
acids of the inner membrane are highly unsaturated.
Therefore, ROS attack to the mitochondrial membrane
lipid components results in lipid peroxidation, which
alters the membrane potential [15, 16].

Enzymatic antioxidants and non-enzymatic
mitochondrial components. Glutathione, CoQ,
vitamin C, vitamin E, and lipoic acid are the
non-enzymatic components of the antioxidant
mitochondrial system. The enzymatic antioxidant
mitochondrial system involves superoxide dismutase,
glutathione peroxidase, catalase, glutathione-S-
transferase (GST), glutathione reductase (GR),
glutaredoxin, thioredoxin, thioredoxin reductase
(TrxR). Some studies suggest [17, 18], that decreased
levels of activity of mitochondrial SOD and GPx were
associated with mitochondrial oxidative stress.

Mitochondria contain ~10-12 % of total
glutathione quantity in a cell. Mitochondria can
utilize glutathione in two ways: as a recyclable
electron donorand as a consumable in conjugation
reactions by glutathione-S-transferase. A large
intramitochondrial pool of glutathione insures an
efficient operation of the GST-based detoxifying
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system. Reduced glutathione can scavenge superoxide
and hydroxyl radical nonenzymatically or by serving
as an electron-donating substrate to several enzymes
involved in ROS-detoxification. In every case,
glutathione is oxidized toglutathione disulfide that
cannot be exported to cytosol and has tobe reduced in
the mitochondrial matrix. The reduction is catalyzed
by glutathione reductase presented in thematrix of
mitochondria.

There are three isoforms ofsuperoxide dismutase
in the vessel wall: copperzinc SOD (CuZn-SOD or
SOD,), manganese SOD (Mn-SOD or SOD,), and an
EC-SOD is found in the extracellular space (SOD,).

CuZn-SOD is located in the cytosol, nucleus, and
intermembrane space of mitochondria. Manganese-
dependent superoxide dismutase (Mn-SOD) has
localisation in the mitochondrial matrix. This enzyme
is a nuclear-encoded primary antioxidant and has place
in the modulation of redox states. Enzyme contributes
to the reduction of superoxide to H,O,. O," has a pro-
inflammatory role and induces ONOO~ formation,
lipid peroxidation, and recruitment of neutrophils to
sites of inflammation. Mn-SOD (Fig. 1) can accelerate
the reaction and rapidly convert O to H,O,.
Mn*-SOD+0,"—-=Mn"*-SOD+0,
Mn*"-SOD+0, +2H*—Mn"-SOD+H.,0O,

QNOO sobp, H,0, --@Px
H,0

——{
DRk

v

Fig. 1. The mechanism of formation reactive oxygen species in mitochondria

Mn-SOD can scavenge O* and therefore imitates
anti-inflammatory agent. Mn-SOD suppresses ONOO™
production and tyrosine residue nitration and inhibits
membrane lipid peroxidation and mDNA damage [19].
Additionally, Mn-SOD participates in the mitochondrial
repair processes and has a role along with p53 in
inhibition of mitochondrial DNA damage [20]. Copper,
zinc-dependent superoxide dismutase is also found in
the mitochondrial inter-membrane space, lysosomes,
nuclei, and peroxisomes. Thus, Cu and Zn participate
in the SOD enzymatic mechanisms play a significant
role in oxidative balance [21, 22]. However, some O,
escapes into the intermembrane space from the matrix
side of the inner mitochondrial membrane, it can be
partly catalyzed to H,O, by Cu, Zn-SO D.

Selenium-containing glutathione peroxidase
(GPx) has 8 multiple isoforms. GPx-1 is a major
isoform localized in the cytoplasm and mitochondrial
matrix [23] and metabolized H,O, to oxygen and water.
But the level of GPx-1 activity in mitochondria are very
low, compared with cytoplasma. GPx-2 is the major
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oxidative stress-inducible cellular isoform in the lungs.
The isozyme GPx-3 is a selenoprotein, abundantly
found in plasma. GPx-4 is membrane-associated that
is found in the inter-membrane space of mitochondria,
and is able of decreasing lipid hydroperoxides, alkyl
peroxides, and fatty acid hydroperoxides with protect
mitochondrial ATP generation. In some works [24, 25],
GPx-4 has also been shown to repair mitochondrial
oxidative damage, prevent transport of lipid peroxides
and oxidative damage, and maintain the mitochondrial
oxidative-phosphorylation.

Catalase is also an important antioxidant enzyme
that catalyzes the conversion of H,O, to H,O. Enzyme
consists of 4 subunits, each of which contains a ferric
(Fe™) heme group bound to its active site [26]. But
deficiency of ferrum causes a significant decrease of
catalase activity. This enzyme is found in peroxisomes
and is also present in heart mitochondria. The presence
of catalase in cardiomyocytes mitochondria may
prevent excessive H O, from reaching the cytosol,
eventually reacting with myoglobin [27-29].
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The oxidation of superoxide-reduced cytochrome
¢ by cytochromec oxidase generates proton-motive
force that mitochondria can use to produce ATP. And
cytochrome loss can result in more ROS production
from mitochondria [30].

Sources and regulation of mitochondrial
ROS. A lot of researchers have an impression of
mitochondrial dominance in cellular ROS production
and therefore consider mitochondria as important
therapeutic targets and potential regulators of life-time.
The mitochondrial electron transport chain generates O,
first at I and III complexes [2, 13, 26-28]. Complex 111
produces O, by autoxidation of the ubisemiquinone
radical intermediate (QH), during the Q cycle in the
complex, with the Q-site of the complex close to the
intermembrane space being the principal site of O,
production. The Q- site of complex III located close
to the matrix side is less likely to react with oxygen
and form O, since the Qi site firmly binds QH and
stabilizes it. Selective inhibitors of the Qi portion of
the cycle, such as antimycin B, prolong the lifetime of
ubisemiquinone at the Q-site and hence result in excess
release of O,. Conversely, inhibition of the proximal
Q-site by compounds such as myxothiazol inhibits the
formation of ubisemiquinone at the Q- site and thus
reduces the production of O, [28-30].

Some authors also speculated that succinate
dehydrogenase could be involved in ROS generation.
Moreover, functional loss of Complex II can lead
to the development of pathological conditions —
carcinoma, obesity, and neurodegenerative diseases
[31-34]. There are oxidoreductases that feed electrons
to the coenzyme Q pool (NADH-dehydrogenase,
glycerol-3-phosphate dehydrogenase, dihydroorotate
dehydrogenase) etc. All of these might be able of
activating the Q-site of ROS production.

Complex III has the power to release O, to
both sides of the mitochondrial inner membrane,
depending on the portion of the Q cycle involved.
In contrast, complex I-derived O, appears released
into the matrix. Although precise mechanisms of O,
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generation are largely unknown, it is suggested that
complex I produces O, by reverse electron transfer
from complex II upon succinate oxidation in the
absence of NADH-linked substrates or in much
lower amounts in the forward electron transfer from
the NADH-linked substrates. It is suggested that
an iron-sulfur cluster distal in the electron transfer
route of the complex could be the site of electron
leak and O, production. The primary ROS produced
by mitochondria is O,, either in the matrix or the
intermembrane space [35-37].

As a charged species, O, is not readily
diffusible across mitochondrial membranes. But the
mitochondrial penetration transition pore, containing
the voltage-dependent mitochondrial anion channel,
might serve as a channel for intermembranous
mitochondrial O, to pass through the outer
mitochondrial membrane and into the cytosol [24,
38]. Apparently, a more important mechanism for
transmembrane move of reduced oxygen involves
dismutation to H,O, by superoxide dismutase. Once
generated, the uncharged ROS H,O, can easily act
across the membrane.

Conclusions. The study of association between
oxidative stress and mitochondrial dysfunction
provides an opportunity for efficacy of therapies
including maximization of anti-oxidant status. In
addition, mitochondrial damage might provide
an important biomarker for monitoring disease
progression. Increased level of free radicals generated
by damaged mitochondria cause oxidative damage
and a significant disorder in metabolic processes;
impair the flow of electrons along the electron
transport chain; increase the mitochondrial membrane
potential; decrease mitochondrial membrane fluidity
and respiratory control ratios and cellular oxygen
consumption; produce high levels of damage oxidants.
NO produced locally within mitochondria may also be
involved in the regulation of mitochondrial respiration
and O, generation. However, the all reasons for this
are unclear and need future investigation.
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BIOLOGICAL ROLE OF REACTIVE OXYGEN SPECIES IN MITOCHONDRIA

Abstract. This article focuses on the sources of free radicals in the mitochondria and the specificity of
mitochondrial antioxidant enzymes. In recent years, oxidative stress is associated with many human
diseases, including: cardiovascular, neurodegenerative, and kidney and liver disorders, a wide range of
inflammatory-related diseases, cancer, diabetes mellitus. Mitochondria, as the major ATP producer and
the major reactive oxygen species (ROS) and antioxidant producer exert a crucial role within the cell
metabolism. And mitochondria represent an important target for oxidative damage, which can lead to the
death of mitochondria and cell, because damaged mitochondria produce increasingly more (ROS). Produced
ROS often activate local pools of redox-sensitive enzymes of protective signaling pathways and may directly
influence cell viability. However, there are also enzymatic and non-enzymatic components of the antioxidant
mitochondrial system that help in controlling the oxidant-antioxidant system. Moreover, mitochondrial
damage and increased level of free radicals might provide one of the important biomarkers for monitoring
different disease progression.

Key words: oxidative stress, reactive oxygen species, antioxidant system, mitochondria.
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Bioomocmi npo asmopig:

Hdixan Map’sina BikTopiBHa — kaHAWAAaT METUYHUX HayK, AOLCHTKA Kadenpu OioopraHiqHoi i 6i010rivyHol
ximii Ta kimiHiuHOi Oioximii 3akmamy BUIIOI OCBiTH ByKOBHHCHKOTO AEP)KaBHOTO MEAMYHOTO YHiBEpCHTETY,
M. YepHiBIii;

®epenuyk €jena OJiekcaHApiBHA — KaHIUAAT MEAWYHHUX HAyK, aCHCTEHTKa Kadernpu OioopraHiuHoi
i OlomoriyHoi XiMii Ta KIIiHIYHOI GioXimil 3aKiaxy BUIIOI OCBITH BYKOBHHCHKOTO IEp:KaBHOTO MEIUYHOTO
yHiBepcuTety, M. UepHiBIli;

Binoyc Tersna MuxaiitiBHa — JOKTOp MEIWYHUX HAyK, Ipodecopka kadempu memiarpii Ta TUTIIHX
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