© Mopo3 Γ.A., 2012

УДК 576.3/7:591.147.6:599.323.41:533.6.013.8:616-008.9

МОРФОФУНКЦИОНАЛЬНЫЕ ИЗМЕНЕНИЯ НАДПОЧЕЧНЫХ ЖЕЛЕЗ 2-МЕСЯЧНЫХ КРЫС ПРИ СИСТЕМАТИЧЕСКОМ ВОЗДЕЙСТВИИ ГИПЕРГРАВИТАЦИИ В УСЛОВИЯХ ФИЗИЧЕСКОЙ ЗАЩИТЫ

Г.А.Мороз

Кафедра нормальной анатомии (зав. – проф. В.С.Пикалюк) Крымского государственного медицинского университета им. С.И.Георгиевского, г. Симферополь

МОРФОФУНКЦІОНАЛЬНІ ЗМІНИ НАДНИРКОВИХ ЗАЛОЗ 2-МІСЯЧНИХ ЩУРІВ ПРИ СИСТЕМАТИЧНІЙ ДІЇ ГІПЕРГРАВІТАЦІЇ В УМОВАХ ФІЗИЧНОГО ЗАХИСТУ

Резюме. За допомогою світлової та електронної мікроскопії вивчені морфофункціональні зміни надниркових залоз щурів-самців лінії Вістар, які піддавалися систематичній дії гравітаційних перевантажень (9 g, 10 xв) в умовах фізичного захисту. Виявлено помірні циркуляторні порушення, ознаки функціонального напруження та дистрофічно-деструктивні зміни кіркових і мозкових ендокриноцитів, характерних для стрес-реакції. Використання фізичного захисту не забезпечує суттєвого позитивного ефекту у підтриманні морфофункціонального статусу надниркових залоз.

Ключові слова: надниркова залоза, морфологічні зміни, гіпергравітація, захист.

Изучение адаптации организма к действию внешних факторов является актуальной медикобиологической проблемой [1]. При гравитационных перегрузках (ГП) надпочечные железы (НЖ) в тесном взаимодействии с органами нервной и иммунной систем участвуют в регуляции обменных и энергетических процессов [2, 3]. Нашими предыдущими работами [4, 5] доказано, что в НЖ крыс, подвергавшихся систематическому воздействию ГП, развиваются типичные для стресс-реакции морфофункциональные преобразования, проявляющиеся повышением функциональной активности коры и развитием дистрофических изменений эндокриноцитов на фоне нарушений гемомикроциркуляции. При этом выраженность изменений и их динамика зависят от кратности воздействия и возраста животных. Однако невыясненными остаются особенности реакции НЖ на повторяющиеся ГП в условиях применения различных видов защиты.

Цель исследования: изучить морфофункциональные преобразования в НЖ при систематическом воздействии ГП в условиях противоперегрузочной защиты.

Материал и методы. Исследование проведено на 36 крысах-самцах линии Вистар 2месячного возраста (на начало эксперимента). Животные были разделены на 2 группы: контрольную (K) и экспериментальную $(\Phi 3)$. В зависимости от срока эксперимента (10, 30 и 45 дней) крысы каждой группы были подразделены на три серии по 6 крыс в каждой. Экспериментальных крыс ежедневно путем врашения в иентрифуге (Ц-2/500) подвергали 10-минутному воздействию поперечно-направленных ГП величиной 9 д в условиях физической защиты (пат. № 16546 Україна, 2006). Животных выводили из эксперимента на следующий день после последнего сеанса ГП методом декапитации под эфирным наркозом. Эксперимент проведен с соблюдением действующих биоэтических норм. НЖ взвешивали, после чего отбирали материал для гистологического исследования. Готовили серийные срезы НЖ толщиной 4-6 мкм. Для изучения структурных компонентов органа срезы окрашивали гематоксилином и эозином, по ван Гизону. Для трансмиссионной электронной микроскопии кусочки фиксировали в глютаровом альдегиде на фосфатном буфере и дофиксировали в 1% растворе четырехокиси осмия. Материал заливали в эпон-812. Полутонкие срезы, окрашенные толуидиновым синим, изучали светооптическим методом. Ультратонкие срезы (30-60 нм) после контрастирования по Рейнольдсу изучали и фотографировали на электронном микроскопе ПЭМ-125К Сумского ПО «Электрон». Детали гистологического строения изучали с помощью цитоморфологического комплекса на базе микроскопа Olympus CX31. В среде морфометрической программы ІтадеЛ производили вычисления средних величин относительных показателей структурных компонентов НЖ на тканевом, клеточном и субклеточном уровнях. Количественные показатели обрабатывали методами вариационной статистики. Достоверными считали данные с погрешностью меньше 5% (p<0,05 в тексте обозначено — *).

Результаты исследования. После 10-дневного эксперимента относительная масса НЖ увеличивалась в 2,3 раза* в сравнении с данными контроля. Микроскопически в НЖ выявляли умеренное полнокровие и расширение всех звеньев кровеносного русла, в субкапсулярных венулах — сладж-синдром. Вокруг мелких сосудов и капилляров наблюдали перивазальный отек, очаги диапедезных кровоизлияний. Отмечали разрыхление капсулы с плазматическим пропи-

тыванием и набуханием ее волокнистых структур. Строма выглядела отечной, имела признаки новообразования волокон. Относительная площадь коркового вещества в срезе НЖ увеличивалась на 7,24%*, а мозгового вещества – уменьшалась на 50,16%* (табл. 1).

В корковом веществе отмечали увеличение относительных площадей клубочковой и пучковой зон соответственно на 20,04 и 10,23%* на фоне сокращения на 40,79%* доли сетчатой зоны. В клубочковой зоне коры выявляли невыраженный отек и местами дискомплексацию клубочков. Ядра клеток вместо овально-круглой формы принимали неровные очертания. В популяции эндокриноцитов пучковой зоны преобладали светлые клетки, их доля возрастала в сравнении с контролем в 2,9 раза* (табл. 2). Относительная площадь ядер светлых кортикоцитов уменьшалась на 32,02%*. Матрикс ядер был очагово просветлен, хроматин в виде отдельных глыбок располагался вдоль внутренней ядерной мембраны.

Таблица 1 оотношение (%) зон паренхимы налпоченных желез крыс (М+m)

Соотношение (%) зон паренхимы надпочечных желез крыс (м±т)								
Серия	Мозговое	Корковое	Зоны коры					
ОПЫТОВ	вещество	вещество	клубочковая	пучковая	сетчатая			
10 дней								
К	12,60±0,23	87,40±1,15	9,17±0,38	69,01±0,97	21,82±0,53			
Ф3	6,28±0,29*	93,72±0,70*	11,01±0,45*	76,07±0,44*	12,92±0,48*			
30 дней								
К	$9,89\pm0,22$	90,11±1,52	9,27±0,13	76,01±1,57	14,72±0,41			
Ф3	8,53±0,40*	91,47±0,79	8,56±0,25*	80,36±1,00*	11,08±0,39*			
45 дней								
К	11,34±0,18	88,66±0,18	11,84±0,52	77,31±0,92	10,85±0,40			
Ф3	12,06±0,36	$87,94\pm0,70$	15,27±0,33*	72,74±1,07*	11,99±0,58			

Примечание (здесь и далее): * – p<0,05 относительно контроля.

Таблица 2 Соотношение (%) темных и светлых эндокриноцитов в пучковой зоне коры надпочечных желез крыс (М±m)

Серия	Темные	Светлые	Количество клеток на				
ОПЫТОВ	кортикоциты	кортикоциты	4000 мкм^2				
10 дней							
К	73,95±1,28	26,05±1,28	18,58±0,46				
Ф3	25,17±0,64*	74,83±0,64*	19,38±0,74				
30 дней							
К	63,65±1,60	36,35±1,60	11,42±0,43				
Ф3	58,03±1,62*	41,97±0,51*	14,50±0,32*				
45 дней							
К	54,72±0,75	45,28±0,90	12,67±0,37				
Ф3	53,57±0,39	46,43±0,67	12,88±0,21				

Относительная площадь (%) ультраструктур спонгиоцитов пучковой зоны коры надпочечных желез крыс (M±m)

Серия опытов	Вид кортикоцита	Ядро	Цитоплазма	Липосомы			
10 дней							
К	светлый	21,46±1,02	78,54±1,80	2,92±0,08			
	темный	14,63±0,52	85,37±2,47	4,64±0,21			
Ф3	светлый	14,59±0,13*	85,41±0,13*	7,49±0,84*			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	темный	13,47±0,54	86,53±0,54	6,34±0,15*			
30 дней							
К	светлый	10,84±0,45	89,16±2,35	5,05±0,23			
K	темный	7,67±0,38	92,33±1,62	5,36±0,25			
Ф3	светлый	18,67±0,23*	81,33±1,58*	5,12±0,15			
Ψ 3	темный	11,28±0,54*	88,72±0,81	6,91±0,24*			
45 дней							
К	светлый	13,75±0,57	86,25±1,76	5,70±0,27			
I.	темный	9,94±0,22	90,06±1,19	6,57±0,31			
Ф3	светлый	12,56±0,32	87,44±1,74	6,31±0,26			
Ψ	темный	9,17±0,27	90,83±0,61	7,05±0,18			

Цитоплазма выглядела расширенной и очагово просветленной за счет расширения перинуклеарного пространства, вакуолизации канальцев эндоплазматической сети, набухания митохондрий и разрушения в них крист. При этом в цитоплазме накапливались липидные включения разной электронной плотности и размеров (табл. 3). Адренокортикоциты сетчатой зоны были морфофу нкционально напряжены и имели ультраструктурные признаки дистрофических изменений. На границе с мозговым веществом отмечали расширение синусоидных капилляров, умеренный перивазальный отек. При этом в самом мозговом веществе встречали запустевшие венулы и синусоиды. В адреналовых и норадреналовых клетках мозгового слоя выявляли ультраструктурные признаки угнетения секреторной функции гЭПС и комплекса Гольджи.

После 30-дневного эксперимента в НЖ развивались циркуляторные расстройства компенсаторно-приспособительного характера. Однако относительная масса НЖ, в сравнении с контролем, увеличивалась больше (в 3 раза*), что можно объяснить снижением темпов прироста массы тела крыс на этом сроке наблюдения. Соотношение мозгового и коркового вещества, а также морфофункциональных зон, в сравнении с 10-дневным экспериментом, характеризовались ме-

ньшими отклонениями от контрольных значений. В пучковой зоне коры отмечали увеличение, в сравнении с предыдущей серией опытов, доли темных клеток. При этом в светлых спонгиоцитах уменьшалось содержание липидных включений, что может свидетельствовать как о повышенной секреторной активности адренокортикоцитов, так и об активации процессов переокисления липидов. В целом ультраструктурные изменения корковых и мозговых эндокриноцитов носили преимущественно дистрофический характер.

После 45-дневного эксперимента относительная масса НЖ недостоверно снижалась (на 9,04%). При этом циркуляторные сдвиги и морфофункциональные преобразования структурных компонентов паренхимы НЖ по направленности и степени выраженности были близкими изменениям при 30-дневной серии опытов.

Выводы. 1. Анализ результатов ГП с применением физического способа защиты выявил, что использование противоперегрузочного устройства не обеспечивает существенного положительного эффекта в поддержании морфофункционального статуса НЖ. 2. В перспективе целесобразно изучить морфофункциональные особенности реактивности НЖ крыс разного возраста на систематическое воздействие ГП на фоне разных способов защиты.

Литература

1. Пащенко П.С. Изменения структуры поджелудочной железы после воздействия на организм гравитационных перегрузок / П.С.Пащенко, И.В.Захарова // Морфол. — 2006. — Т. 129, № 1. — С. 62-67.

2. Краснов И.Б. Роль эндокринных желез в механизме дивергенции пластических процессов и энергетического обмена у крыс при длительном воздействии гипергравитации. Цитологическое исследование / И.Б.Краснов, Е.И.Алексеев, В.И.Логинов // Авиакосм. и экол. мед. — 2006. — Т. 40, № 3. — С. 29-34. 3. Hypergravity-induced increase in plasma catecholamine and corticosterone levels in telemetrically collected blood of rats during centrifugation / J.Petrak, B.Mravec, M.Jurani [et al.] // Ann. N. Y. Acad. Sci. — 2008. — № 1148. — Р. 201-208. 4. Мороз Г.А. Морфологические изменения в надпочечниках крыс под воздействием поперечно-направленных гравитационных перегрузок / Г.А.Мороз, В.С.Пикалюк, Н.В.Кирсанова // Тавр. мед.-биол. вестн. — 2005. — Т. 8, № 3. — С. 81-84. 5. Мороз Г.А. Ультраструктурные изменения в пучковой зоне коры надпочечников крыс при систематическом воздействии гипергравитации / Г.А.Мороз // Гал. лікар. вісн. — 2010. — Т. 17, № 2, ч. 2. — С. 78-80.

МОРФОФУНКЦИОНАЛЬНЫЕ ИЗМЕНЕНИЯ НАДПОЧЕЧНЫХ ЖЕЛЕЗ 2-МЕСЯЧНЫХ КРЫС ПРИ СИСТЕМАТИЧЕСКОМ ВОЗ-ДЕЙСТВИИ ГИПЕРГРАВИТАЦИИ В УСЛО-ВИЯХ ФИЗИЧЕСКОЙ ЗАЩИТЫ

Резюме. С помощью световой и электронной микроскопии изучены морфофункциональные изменения в надпочечных железах крыс-самцов линии Вистар, которые подвергались систематическому воздействию гравитационных перегрузок (9 g, 10 мин) в условиях физической защиты. Выявлены умеренные циркуляторные нарушения, признаки функционального напряжения и дистрофически-деструктивные изменения корковых и мозговых эндокриноцитов, характерные для стресс-реакции. Использование физической защиты не обеспечивает существенного позитивного эффекта в поддержании морфофункционального статуса надпочечных желез.

Ключевые слова: надпочечная железа, морфологические изменения, гипергравитация, защита.

MORPHOFUNCTIONAL CHANGES OF THE ADRENAL GLANDS OF 2-MONTH OLD RATS UNDER A SYSTEMATIC ACTION OF HYPER-GRAVITATION UNDER THE CONDITIONS OF PHYSICAL PROTECTION

Abstract. We have studied morphofunctional changes of the adrenal glands of male rats of the wistar line which were subjected to a systematic action of gravitational overloadings (9 g. 10 min) under the conditions of physical protrction. Moderate circulatory disturbances, sings of a functional stress and dystrophic – destructive changes of cortical and medullary endocrinocytes typical of a stress reaction have been detected. The use of physical protection does not provide an essential positive effect in maintaining the morphofunctional status of the adrenal glands.

Key words: adrenal gland, morphological changes, hypergravitation, protection.

Crimean State Medical University named after S.I.Georgiievskyi (Simferopol)

Надійшла 18.06.2012 р. Рецензент – проф. К.С.Волков (Тернопіль)